Conformation of 6-Morpholino-3-azabicyclo[3.1.0]hexane Derivatives

Claus Tetzlaff,^{*} Volker Butz,^{*} Elmar Vilsmaier,^{*,*} Rolf Wagemann,^{*} Gerhard Maas,^{*} Andreas Ritter von Onciul^b and Timothy Clark^b

^a Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Str., D-67663 Kaiserslautern, Germany

^b Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestr. 42, D-91054 Erlangen, Germany

¹H NMR spectroscopic studies established the presence of a chair conformation for *endo*-3-methyl-6-morpholino-3-azabicyclo[3.1.0]hexane derivatives **8a** and **b**. This was additionally confirmed by an X-ray structural analysis of **8b**. The diastereomers **10a**,**b** and the *N*-demethyl-*endo*-morpholino compounds **9a**,**b**, however, were found to prefer a boat conformation. The correlation between dihedral angles and ring buckle of 3-azabicyclo[3.1.0]hexane **4** was determined by MNDOC semiempirical calculations. Further structural information about this bicyclic system was obtained by HF/6-31 G* calculations for the 3-azabicyclo[3.1.0]hexane parent compounds **4** and **5**.

X-Ray structural analyses of some 3-azoniabicyclohexane derivatives 1, 1 2^1 and 3^2 showed that this type of compound adopts mainly a boat conformation in the solid state. 3-Azoniabicyclo[3.1.0]hexane derivatives 6^3 and 7, 4^4 however, possessing two additional substituents at the N(3)-atom, prefer a chair conformation as the most favourable structure.

A half chair conformation⁵ and a slightly boat shaped conformation⁶ were postulated for compounds 4 and 2 due to detailed ¹H NMR spectroscopic investigations (LAOCN 3), respectively. Within our work on stereoselective syntheses, we found an access to two pairs of 6-morpholino-3-azabicyclo-[3.1.0]hexane diastereomers **8a**,**b**^{7.8} and **10a**,**b**.⁹

Conformational properties of these aminoazabicyclo[3.1.0]-

hexanes **8a,b** and **10a,b** and of the *N*-demethyl species **9a,b** were studied by ¹H NMR spectroscopy. An X-ray structural analysis gave further insight in the conformation of derivative **8b**. General information about the structural properties of the 3azabicyclo[3.1.0]hexane skeleton were expected from HF/6-31 G* calculations which were done for the parent compounds 4 and **5**. The results of these conformational investigations are described in this paper.

Results and Discussion

The syntheses of diastereomeric compounds $8a/10a^{7.8}$ and $8b/10b^9$ were described in the literature. N-Demethyl compound 9a could be obtained in analogy to $9b^9$ by hydrogenolysis of the corresponding *N*-benzylbicyclic nitrile 11 (Scheme 1).

Scheme 1 Reagents: i, H₂/Pd-C, MeOH

Conformational Analysis of the Compounds **8a,b**, **9a,b** and **10a,b** on the Basis of ¹H NMR Coupling Constants.—The ¹H NMR signals of the 3-azabicyclo[3.1.0]hexane skeleton of the two diastereomeric bicyclic nitriles **8a** and **b** were treated as AA'BB'XX'-spin systems. The experimentally detectable couplings ($J_{AB} = J_{A'B'}$, $J_{AX} = J_{A'X'}$, $J_{BX} = J_{B'X'}$) were taken from the spectra; values of 8.5 Hz (for **8a**) and 6.5 Hz (for **10a**) were taken for the $J_{XX'}$ -coupling due to a report on this coupling for 3,5-dioxabicyclo[5.1.0]octane diastereomeric compounds.¹⁰ All other couplings ($J_{AA'}$, $J_{BB'}$, $J_{AB'}$, $J_{AX'}$, $J_{BX'}$) were zero. H(2)_A and H(4)_{A'} are in the *endo*-position, H(2)_B and H(4)_{B'} are in the *exo*-position of the bicyclic system; assignment was made by coupling with H(1)_X/H(5)_{X'} which is larger for *exo*-H atoms (H_B, H_{B'}) in all cases.

Simulation with the LAOKOON III program¹¹ and variation of the coupling constants to a small extent showed that the originally used values already gave sufficient correspondence between the experimental and the simulated ¹H NMR spectra. Subsequent iterative simulation with the PANIC

Table 1 ¹H NMR data of the 3-azabicyclo[3.1.0]hexane skeleton of diastereomeric compounds 8a/10a and 8b/10b and of *N*-demethyl species 9a and 9b (200 MHz, *J* in Hz)^{*a*.*b*}

	$\begin{array}{c} H(1)_{X} \\ H(5)_{X'} \end{array}$	H(2) _B H(4) _{B'}	H(2) _A H(4) _{A'}	J _{1.2В} J _{5.4В'}	J _{1.2A} J _{5.4A'}	J _{2А.2В} J _{4А'.4в'}	J _{1.5}
8a ^{c.d}	1.69	2.87	1.83	5.94	1.96	9.76	8.69
10a ^{d,e}	1.33	2.17	2.83	3.55	0	9.29	7.64
8b ^{f.g}	1.58	3.13	2.10	6.9	2.8	10.1	8.5
10b ^{f.g}	1.46	2.63	2.75	4.8	0	9.6	7.5
9a ^{h.g}	2.15	2.94	3.14	3.3	0	12.8	7.6
9b ^{d.g}	0.98	2.94	2.82	3.7	0	12.3	7.5

^a Coupling constants J were taken from the spectra and optimized by simulation of the ¹H NMR spectra by the LAOKOON III program¹ (for 8a, 9a, 10a) or by the PANIC 81 program¹² (for 8b, 9b and 10b). The coupling between $H(1)_X$ and $H(5)_{X'}(XX'$ -coupling of the AA'BB'XX'system) is essential for a correct simulation of the spectra; ${}^{3}J_{\rm HH} = 8.5$ Hz (for 8a) and ${}^{3}J_{HH} = 6.8$ Hz (for 10a) were used as starting values for the coupling of the two syn-H-atoms $H(1)_X$ and $H(5)_{X'}$ at the cyclopropane. All other couplings $(J_{AA'}, J_{BB'}, J_{AB'}, J_{AX'}, J_{BX'})$ were zero. ^b Numbers of atoms correspond to the usual counting in a 3azabicyclo[3.1.0]hexane system; $H(2)_A$ and $H(4)_{A'}$ are in the endoposition and $H(2)_{B}$ and $H(4)_{B'}$ are in the exo-position of the bicyclic skeleton. Assignment was made by coupling with $H(1)_X/H(5)_{X'}$ which is larger for exo-hydrogen atoms (H_B, H_{B'}) in all cases. 'Additional iterative adaption of the spectrum by the PANIC 81 program;¹² two iterative steps, RMS-error at the end of the 2nd step: 0.098; error of $J \pm 0.04$ Hz. ${}^{d}C_{6}D_{5}CD_{3}$. ^eAdditional iterative adaption of the spectrum by the PANIC 81 program;12 four iterative steps, RMS-error at the end of the 3rd and the 4th step: 0.067; error of $J \pm 0.02$ Hz. ^f CDCl₃. ^g J-values are given with only one decimal digit if iterative simulation was not performed. ^h CD₃CN.

Fig. 1 Signals of the 3-azabicyclo[3.1.0]hexane skeleton of 8a and 10a of the simulated and the experimental ¹H NMR spectrum

81 program¹² led to an almost identical reproduction of the experimental spectra of **8a** and **10a**. J-Values from the iterative simulation are given in Table 1; Fig. 1 shows the signals of the 3-azabicyclo[3.1.0]hexane skeleton of **8a** and **10a** of the simulated and the experimental ¹H NMR spectrum.

Simulation without iterative proceeding was performed in the case of **8b/10b** and **9a/9b**. Iterative calculated XX'-coupling constants of **8a** and **10a** were used for the simulation of the spectra of **8b/10b** and **9a/9b**. The other experimentally detectable coupling constants were varied to some extent until an optimal agreement between experimental and simulated ¹H NMR spectra was obtained (Table 1).

The ¹H NMR signals of the azabicyclo[3.1.0] hexane skeleton of **8a** and **b** on the one hand and of **9a,b** and **10a,b** on the other hand differ both in shape and in chemical shifts. The most important fact is the coupling $J_{1.2A}$ and $J_{5,4A'}$. It indicates the presence of a chair conformation **C** for **8a,b** $(J_{1.2A}, J_{5,4A'}) =$

Table 2 Correlation between the angle of ring buckle (α) and some dihedral angles in 3-azabicyclo[3.1.0]hexane **4** obtained by MNDOC calculations^a

Conformation α (°)		Dihedral angles (°) ^b H(1)C(1)C(2)H(2) _B H(1)C(1)C(2)H(2) _A H(5)C(5)C(4)H(4) _{B'} H(5)C(5)C(4)H(4) _{A'}			
Boat	25	- 35.9	83.1		
Boat	20	-33.2	85.6		
Boat	15	- 30.4	88.1		
Boat	10	-27.6	90.7		
Boat	5	-24.9	93.4		
Chair	5	19.5	98.7		
Chair	10	16.7	101.6		
Chair	15	-14.0	104.4		
Chair	20	-11.3	107.3		
Chair	25	8.7	110.2		
Chair	30	-6.1	113.1		

^{*a*} MNDOC parameters taken from ref. 13. ^{*b*} Values of dihedral angles directed to $H(2)_{A,B}$ and $H(4)_{A',B'}$ are identical due to C_s -symmetry.

0 Hz) and a boat conformation **B** for **9a,b** and **10a,b** $(J_{1,2A}, J_{5,4A'} = 2-3$ Hz).

HC(1)C(2)H/HC(5)C(4)H-dihedral angles of the 3-azabicyclo[3.1.0]hexane system, dependent upon the ring buckling, were determined by MNDOC semiempirical calculations (see Table 2). For example, a boat conformation with $\alpha = 20^{\circ}$ leads to a dihedral angle of 85.6° for H(1)C(1)C(2)H(2)_A/H(5)C-(5)C(4)H(4)_{A'}. This agrees well with the missing coupling $J_{1.2A}$ and $J_{5.4A'}$ in the boat conformation of **9a,b** and **10a,b**. A value of 30° for a chair conformation on the other hand corresponds with a dihedral angle of 113.1° and with coupling constants of 1.96 Hz and 2.8 Hz for **8a** and **b**, respectively. The MNDOC semiempirical calculations¹³ were done for compound **4**. The ring buckle was varied between -30° and -5° (chair) and between $+30^{\circ}$ and $+5^{\circ}$ (boat) in steps of 5°; each conformation was fully optimized with exception of the value α of the ring buckle.

The ¹H NMR results of **9a,b** and **10a,b** indicating a boat conformation correspond quite well with those which were reported for the boat conformation of methanoproline derivative **1** ['zero coupling'^{1.6} between H(1) or H(5) and the *endo*-H-atom of the adjacent methylene moiety; J values of 2.3 and 4.6 Hz^{1.6} for the analogous coupling of H(1) and H(5) with the *exo*-H-atom of the adjacent methylene group, respectively].

Conformational Analysis of the Compounds **8a/9a** and **8b/9b** on the Basis of Temperature Dependent ¹H NMR Spectroscopy.—¹H NMR spectroscopy of the morpholine moiety in the compounds **8a/10a** and **8b/10b** could be used for a simple establishment of the configuration: topomerization of the H_A and the H_B signal of a CH_AH_B-group of morpholine is much easier if it is in the *exo*-position of a [*n*.1.0] bicyclic system than in the corresponding *endo*-position.^{14,15} It was shown that this topomerization process for hydrogen atoms of a mor-

Table 3 ΔG^{\ddagger} Values of the dynamics of the morpholine ring of the compounds **8a,b** and **9a,b** in CD₃C₆D₅

	$\Delta G^{\ddagger}/\text{kJ} \text{ mol}^{-1}$
8a ^a	58.5, ^b 58.4 ^c
8b ^e	58.6, ^b 59.9 ^c
9a ^d	68.5, ^b 68.7 ^c
9b ^{e.f}	66.0 ^b

^a Ref. 7. ^b Determined for OCH₂. ^c Determined for NCH₂. ^d OCH₂: H_A: 3.43, H_B: 2.95, J_{AB}: 10.9 Hz; $T_c = 77$ °C. NCH₂: H_A: 2.48, H_B: 1.84, J_{AB}: 11.2 Hz; $T_c = 82$ °C; ΔG^{\ddagger} calculated according to the approximation formula for the coupled case.¹⁸ ^e Ref. 9. ^f OCH₂: H_A: 3.53, H_B: 3.11, J_{AB}: 12.0 Hz; $T_c = 63$ °C. NCH₂: H_A: 2.39, H_B: 1.90, J_{AB}: 12.0 Hz; $T_c = 65$ °C; ΔG^{\ddagger} calculated according to the approximation formula for the coupled case.¹⁸

Table 4 Selected bond lengths, torsional angles and interplanar angles for $8b^a$

Bond lengths/Å			
C(1)-C(5)	1.512(3)	N(3)-C(2)	1.460(3)
C(1) - C(6)	1.508(3)	N(3)-C(7)	1.433(3)
C(5)-C(6)	1.519(3)	C(4)–N(3)	1.478(3)
Torsional angles (°)			
H(1)-C(1)-C(2)-H(2)	2) _A 112.3	$H(4)_{A}-C(4)-C$	(5)-H(5) -112.5
H(1)-C(1)-C(2)-H(2)	$(2)_{\rm B} = -11.5$	$H(4)_{B}-C(4)-C(4)$	(5)-H(5) 5.1
Interplanar angles (')		
C(1)C	C(5)C(6)-C(4)C	C(5)C(1)C(2)	65
C(4)C	C(5)C(1)C(2)-C	C(2)N(3)C(4)	29.5

^a The numbering of the atoms in Fig. 2 and Table 4 in this paper was changed partially with respect to the numbering in the deposited data; it was adjusted to the general numbering in a 3-azabicyclo[3.1.0]hexane system for better comparison with other data.

Fig. 2 ORTEP representation of 8b with the atom-labelling scheme. Elipsoids are scaled to enclose 33% of the electronic density.

pholine moiety in the *endo*-6-position of a bicyclo[3.1.0]hexane skeleton was additionally influenced by the conformation of the latter: the dynamics of morpholine are more hindered by a boat bicyclo[3.1.0]hexyl moiety than by a chair bicyclohexyl group as N-substituent.^{16,17}

It may be expected, therefore, that conformational differences of **8a** and **9a** or **8b** and **9b** also are detectable by studying the morpholine dynamics. Thus, the ΔG^{\ddagger} -values of **9a** and **b** were determined and compared with those of **8a** and **b**, respectively (Table 3). The N(3)-H compounds **9a** and **b** indeed gave higher ΔG^{\ddagger} -values for the topomerization of morpholine H-atoms than the N(3)-methyl analogues **8a** and **b**. The obviously higher space requirement of N(3)-H in **9a** and **b** than N(3)-Me in **8a** and **b** can only be understood by the presence of different conformations since H-N is less bulky than N-Me. A boat conformation can be deduced for **9a,b** and a chair conformation follows for **8a,b**. Presumably, the H-atom at N(3) in **9a** and **b** is in the axial position due to lone pair-lone pair repulsion.

X-Ray Structural Analytic Detection of the Conformation of 8b.-Thus far X-ray structural data are only known for 3azoniabicyclo[3.1.0]hexane derivatives possessing an ammonium type nitrogen atom. Compound 8b was selected, therefore, for the X-ray structural analysis to get information about the conformation of a 3-azabicyclo[3.1.0]hexane skeleton as a free base. X-Ray structural analysis was performed at -68 °C. Selected data are given in Table 4. The presence of a chair conformation with an equatorial N-methyl group for 8b can be clearly seen in the Ortep plot (Fig. 2). A steric inside fixation of the morpholine N-lone pair by the bicyclic system and its repulsive effect on the lone pair of the N(3)-nitrogen atom should be the reason for the chair structure of this type of compounds. MNDOC prediction of the dihedral angles $H(1)C(1)C(2)H(2)_{A/B}/H(5)C(5)C(4)H(4)_{A/B}$ for the found ring buckle $a = 29.5^{\circ}$ (Table 2) agrees sufficiently with the experimental values from the X-ray structural analysis (Table 4).

 $HF/6-31G^*$ Calculations of the 3-Azabicyclo[3.1.0]hexane Parent Compounds 4 and 5.—Energetic differences of chair and boat conformations of the 3-azabicyclo[3.1.0]hexane skeleton should be best predicted by *ab initio* calculations. The *ab initio* calculations were performed using the Convex and Cray versions of the Gaussian 92 program package.²⁰ The 6-31 G* basis set²¹ was chosen for geometry optimizations. All geometries were fully optimized in C_s symmetry and characterized by diagonalization of the HF/6-31G* force matrix. Four conformations were investigated for each of the two parent compounds 4 and 5: a boat conformation with an axial (B_{ax}) or equatorial (B_{eq}) N-substituent and analogously a chair conformation with an axial (C_{ax}) or equatorial (C_{eq}) N-moiety.

HF/6-31G* total energies, zero point energies ZPE, relative energies and interplanar angles of these selected conformations of 4 and 5 are given in Table 5; the missing conformation $4C_{eq}$ proved not to be a minimum on the energy hypersurface. Fig. 3 shows the calculated structures of 4 and 5. The boat conformation turned out to be favoured for both compounds 4 and 5. In the case of 4, however, almost identical energies were calculated for both boat conformations $4B_{ax}$ and $4B_{eq}$. An axial position of the *N*-methyl moiety in 5 was calculated to be unfavourable for boat and for chair conformation $5B_{ax}$ and $5C_{ax}$, respectively. The lowest energy was found for $5B_{eq}$.

The ring buckling (interplanar angles) of the chair conformation $5C_{eq}$, predicted by the *ab initio* calculation (67.7° and 28.6°), corresponds quite well with the experimental values of the X-ray structural analysis of **8b** (65° and 29.5°). The presence of a boat or a chair conformation proved to have no influence on the bond-length of C(1)C(6), C(1)C(5) or N(3)C(2) of the compounds 4 and 5 [C(1)C(6): 1.50 Å for all conformations of 4 and 5; C(1)C(5): 1.53 Å for all conformations of 4 and 5 except 4B_{ax} (1.52 Å) and 4C_{ax} (1.52 Å); C(2)N(3): 1.46 Å for all conformations of 4 and 5 except 4B_{eq} (1.47 Å)].

Conclusions

A boat conformation should be most favourable for a 3azabicyclo[3.1.0]hexane skeleton as indicated by *ab initio* calculations for the parent compounds 4 and 5. It was shown experimentally that 6-morpholino-3-azabicyclohexane derivatives indeed prefer a boat conformation if the 6-amino moiety is in the *exo*-position as in 10. Prevention of lone pairlone pair interactions, however, becomes important in the case

Table 5 HF/6-31 G* Total energies (au), zero point energies (kcal mol⁻¹), relative energies including ZPE correction (kcal mol⁻¹) and interplanar angles of the conformers $4B_{ax}$, $4B_{eq}$, $4C_{ax}$, $5B_{ax}$, $5B_{eq}$, $5C_{ax}$ and $5C_{eq}$

		HE(au) [F]		Interplanar angle (°) ^a	
	Conformation	$\frac{111^{-1}(au)\left[L_{re1}\right]}{kcal mol^{-1}}$	ZPE/kcal mol ⁻¹	C(1)C(5)C(6) C(4)C(5)C(1)C(2)	C(4)C(5)C(1)C(2) C(2)N(3)C(4)
$4B_{eq}$	Boat	248.982 43	91.44	68.2	35.0
$4B_{ax}$	Boat	-248.982 53	91.56	68.3	26.4
$4C_{ax}$	Chair	-248.974 96 [4.7]	91.43	67.8	25.1
$5B_{eq}$	Boat	-288.014 33	110.01	68.0	34.4
$5C_{eq}$	Chair	-288.007 45	109.84	67.7	28.6
5B _{ax}	Boat	- 288.006 59	109.82	68.8	15.5
5C _{ax}	Chair	- 288.002 16 [7.8]	110.15	67.5	31.0

" The numbering of the atoms corresponds to the general numbering in a 3-azabicyclo[3.1.0]hexane system.

 $4B_{eq}$

4B_{ax}

4C_{ax}

Fig. 3 HF/6-31G* Optimized geometries of the 3-azabicyclo[3.1.0] hexane derivatives 4 and 5

of *endo*-6-morpholino-3-azabicyclohexane compounds 8 and 9. In this case lone pair-lone pair interactions are circumvented in a boat conformation by arranging the lone pair in an equatorial position. This can be realized by 9 with a hydrogen atom as substituent at N(3). Substituents at N(3) which are larger than a hydrogen atom strongly prefer an equatorial position. Interaction of the resulting axial N(3)-lone pair with the second N-lone pair then can be avoided only by adoption of a chair conformation as in 8.

Experimental

¹H NMR and ¹³C NMR spectra were measured with a Bruker WP 200 and an AMX 400 spectrometer (Me_4Si as internal standard). *Ab initio* calculations were done with a Convex C220 and a Cray YMP supercomputer. MNDOC semiempirical molecular orbital calculations were performed on a 486 Personal Computer.

 $(1_{\alpha}, 5_{\alpha}, 6\beta)$ -6-Morpholino-3-azabicyclo[3.1.0]hexane-6-carbonitrile **9a**.—Pd-catalyst (10% Pd–C, 710 mg) was added to a solution of *N*-benzyl compound 11⁹ (2.0 g, 7.06 mmol) in methanol (80 cm³). The solution was saturated with hydrogen and stored over hydrogen until the theoretical amount of hydrogen (157 cm³, 7.06 mmol) was consumed. Removal of the catalyst by filtration, evaporation of the solvent and recrystallization of the residue from ether gave **9a** as colourless crystals (0.75 g, 55%); m.p. 81 °C (Found: C, 62.2; H, 8.0; N, 21.8. C₁₀H₁₅N₃O requires C, 62.15; H, 7.82; N, 21.74%); $v_{max}(KBr)/cm^{-1}$ 3380 (N–H) and 2200 (C–N); $\delta_{H}(CD_3CN)$ 1.90 (1 H, br s, NH), 2.15 (2 H, H_{X1}, H_{X'1}), 2.94 (2 H, H_{B1}, H_{B'1}), 3.14 (2 H, H_{A1}, H_{A'1}) (AA'BB'XX'-system, 3-azabicyclohexane system), 2.51 (2 H, H_y), 2.60 (2 H, H_{X2}), 3.48 (2 H, H_{B2}) and 3.74 (2 H, H_{A2}) (ABXY-system, morpholine); $\delta_{C}(CDCl_3)$ 32.5 (d), 41.5 (s), 48.0 (t), 51.3 (t), 66.8 (t) and 116.1 (s).

X-Ray Crystal Structure Analysis of **8b**.—Single crystals of **8b**⁹ were obtained by crystallization from ether.

Crystal data. $C_{11}H_{20}N_2O$, M = 196.3. Monoclinic, a = 8.447(4), b = 8.825(3), c = 15.420(6) Å; $\beta = 105.66(3)^\circ$, V = 1106.8(15) Å³; space group $P2_1/n$, Z = 4, $D_X = 1.18$ g cm⁻³.

Colourless crystal. Crystal dimensions $0.6 \times 0.5 \times 0.3$ mm, μ (Mo-K α) = 0.71 cm⁻¹.

Data collection and processing. Enraf-Nonius CAD4 diffractometer, temperature: 205 K; $\omega/2\theta$ mode with ω scan width = 1.00 + 0.35 tan θ , ω scan speed 1.21-4.02 deg min⁻¹, graphite-monochromated Mo-K α radiation; 1235 reflections measured (4.00 < 2 θ < 42.00°), 1182 unique [merging R = 0.036], giving 988 with $I > 2.50\sigma(I)$.

Structure analysis and refinement. The structure was solved by direct methods. Refined was performed by a full-matrix least-squares program. Hydrogen atoms were localized in a ΔF map and refined with isotropic temperature factors. Refinement converged at R = 0.0064 and $R_w = 0.069$, weighting scheme: $w = 4F_o^2/[\sigma(I)^2 + (PF_o^2)^2]$ (P = 0.015). The largest shift/ error ratio at this stage was 0.62. The residual electron density was < 0.23.¹⁹

Acknowledgements

Support of this work by the *Deutsche Forschungsgemeinschaft* is gratefully acknowledged. Additionally the work was sponsored by the *Fonds der Chemischen Industrie*.

References

- 1 Y. Fujimoto, F. Irreverre, J. M. Karle, I. L. Karle and B. Witkop, J. Am. Chem. Soc., 1971, 93, 3471.
- 2 J. W. Epstein, H. J. Brabander, W. J. Fanshawe, C. M. Hofmann, T. C. McKenzie, S. R. Safir, A. C. Osterberg, D. B. Cosulich and F. M. Lovell, J. Med. Chem., 1981, 24, 481.
- 3 F. R. Ahmed and E. J. Gabe, Acta Crystallogr., 1964, 17, 603.
- 4 E. Vilsmaier, C. Tetzlaff, V. Butz and G. Maas, *Tetrahedron*, 1991, 47, 8133.
- 5 D. Wendisch and W. Naegele, Org. Magn. Reson., 1970, 2, 619.
- 6 R. J. Abraham and G. Gatti, Org. Magn. Reson., 1970, 2, 173.

- 7 C. Tetzlaff, E. Vilsmaier and W.-R. Schlag, Tetrahedron, 1990, 46, 8117.
- 8 E. Vilsmaier, T. Stamm, W. Dauth, C. Tetzlaff and S. Barth, *Bull. Soc. Chim. Belg.*, 1992, **101**, 37.
- 9 V. Butz and E. Vilsmaier, Tetrahedron, 1993, 49, 6031.
- 10 K. G. Taylor, J. Chaney and J. C. Deck, J. Am. Chem. Soc., 1976, 98, 4163.
- 11 LAOKOON III Fortran Version, G. A. Mirris, Department of Chemistry, University of Manchester, UK; Atari-ST-Version, R. Paape, Bremen, Germany.
- 12 ASPECT-2000-NMR-Software Manual, Part 11; NMR-Simulation and Iteration, PANIC 81, Fa. Bruker.
- 13 W. Thiel, J. Am. Chem. Soc., 1981, 103, 1413.
- 14 E. Vilsmaier, W. Tröger and G. Haag, Chem. Ber., 1981, 114, 67.
- 15 E. Vilsmaier, Bull. Soc. Chim. Belg., 1985, 94, 521.
- 16 E. Vilsmaier, J. Fath and G. Maas, Synthesis, 1991, 1142.
- 17 E. Vilsmaier, J. Fath, C. Tetzlaff and G. Maas, J. Chem. Soc., Perkin Trans. 2, preceding paper.
- 18 H. Günther, NMR-Spektroskopie, Thieme, Stuttgart, 1992, pp. 310, 321.
- 19 All calculations were done with the program package MoIEm (Enraf-Nonius, Delftt, The Netherlands).
- 20 GAUSSIAN 92, Revision, B. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, Gaussian, Inc., Pittsburg PA, 1992.
- P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1972, 28, 213;
 M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon,
 D. J. DeFrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654; W. J.
 Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, *Ab Initio Molecular Orbital Theory*, Wiley, New York, 1986.

Paper 3/02054A Received 8th April 1993 Accepted 8th June 1993