Conformation of 6-Morpholino-3-azabicyclo[3.1.0]hexane Derivatives

Claus Tetzlaff, ${ }^{a}$ Volker Butz, ${ }^{a}$ Elmar Vilsmaier, *, ${ }^{\text {a }}$ Rolf Wagemann, ${ }^{\text {a }}$ Gerhard Maas, ${ }^{a}$ Andreas Ritter von Onciul ${ }^{b}$ and Timothy Clark ${ }^{b}$
${ }^{a}$ Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Str., D-67663 Kaiserslautern, Germany
${ }^{b}$ Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestr. 42, D-91054 Erlangen, Germany

Abstract

${ }^{1} \mathrm{H}$ NMR spectroscopic studies established the presence of a chair conformation for endo-3-methyl6 -morpholino-3-azabicyclo[3.1.0] hexane derivatives $8 \mathbf{a}$ and \mathbf{b}. This was additionally confirmed by an X-ray structural analysis of $\mathbf{8 b}$. The diastereomers $10 \mathrm{a}, \mathrm{b}$ and the N -demethyl-endo-morpholino compounds $9 \mathbf{a}, \mathbf{b}$, however. were found to prefer a boat conformation. The correlation between dihedral angles and ring buckle of 3 -azabicyclo[3.1.0]hexane 4 was determined by MNDOC semiempirical calculations. Further structural information about this bicyclic system was obtained by HF/6-31 G^{*} calculations for the 3 -azabicyclo[3.1.0] hexane parent compounds 4 and 5 .

X-Ray structural analyses of some 3-azoniabicyclohexane derivatives $1,{ }^{1} 2^{1}$ and 3^{2} showed that this type of compound adopts mainly a boat conformation in the solid state. 3Azoniabicyclo[3.1.0]hexane derivatives 6^{3} and $7,{ }^{4}$ however, possessing two additional substituents at the $\mathrm{N}(3)$-atom, prefer a chair conformation as the most favourable structure.

$R^{1}=R^{3}=H, R^{2}=\mathrm{COO}^{-}$
$2 R^{2}=R^{3}=H, R^{1}=\mathrm{COO}^{-}$
$3 R^{1}=R^{2}=H, R^{3}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-$

6
$4 R=H$

$5 \mathrm{R}=\mathrm{CH}_{3}$

7

A half chair conformation ${ }^{5}$ and a slightly boat shaped conformation ${ }^{6}$ were postulated for compounds 4 and 2 due to detailed ${ }^{1} \mathrm{H}$ NMR spectroscopic investigations (LAOCN 3), respectively. Within our work on stereoselective syntheses, we found an access to two pairs of 6-morpholino-3-azabicyclo[3.1.0]hexane diastereomers 8a, ${ }^{7,8}$ and 10a,b. ${ }^{9}$

Conformational properties of these aminoazabicyclo[3.1.0]-
hexanes $\mathbf{8 a , b}$ and $\mathbf{1 0 a}, \mathbf{b}$ and of the N-demethyl species $\mathbf{9 a}, \mathbf{b}$ were studied by ${ }^{1} \mathrm{H}$ NMR spectroscopy. An X-ray structural analysis gave further insight in the conformation of derivative $\mathbf{8 b}$. General information about the structural properties of the 3azabicyclo[3.1.0]hexane skeleton were expected from HF/6-31 G^{*} calculations which were done for the parent compounds 4 and 5. The results of these conformational investigations are described in this paper.

Results and Discussion

The syntheses of diastereomeric compounds $8 \mathbf{a} / 10 \mathbf{a}^{7.8}$ and $\mathbf{8 b} / 10 \mathbf{b}^{9}$ were described in the literature. N -Demethyl compound 9 a could be obtained in analogy to $9 \mathbf{b}^{9}$ by hydrogenolysis of the corresponding N-benzylbicyclic nitrile 11 (Scheme 1).

Scheme 1 Reagents: i, $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$
Conformational Analysis of the Compounds 8a,b, 9a,b and 10a,b on the Basis of ${ }^{1} \mathrm{H} N M R$ Coupling Constants.-The ${ }^{1} \mathrm{H}$ NMR signals of the 3-azabicyclo[3.1.0]hexane skeleton of the two diastereomeric bicyclic nitriles $8 \mathbf{a}$ and \mathbf{b} were treated as $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX}^{\prime}$-spin systems. The experimentally detectable couplings ($J_{\mathrm{AB}}=J_{\mathrm{A}^{\prime} \mathbf{B}^{\prime}}, J_{\mathrm{AX}^{\prime}}=J_{\mathrm{A}^{\prime} \mathbf{X}^{\prime}}, J_{\mathrm{BX}}=J_{\mathrm{B}^{\prime} \mathbf{X}^{\prime}}$) were taken from the spectra; values of 8.5 Hz (for 8a) and 6.5 Hz (for 10a) were taken for the $J_{\mathrm{xx}^{\prime}}$-coupling due to a report on this coupling for 3,5 -dioxabicyclo[5.1.0]octane diastereomeric compounds. ${ }^{10}$ All other couplings ($J_{\mathrm{AA}^{\prime}}, J_{\mathrm{BB}^{\prime}}, J_{\mathrm{AB}^{\prime}}, J_{\mathrm{AX}^{\prime}}, J_{\mathrm{BX}^{\prime}}$) were zero. $\mathrm{H}(2)_{\mathrm{A}}$ and $\mathrm{H}(4)_{\mathrm{A}^{\prime}}$ are in the endo-position, $\mathrm{H}(2)_{\mathrm{B}}$ and $\mathrm{H}(4)_{\mathrm{B}^{\prime}}$ are in the exo-position of the bicyclic system; assignment was made by coupling with $\mathrm{H}(1)_{\mathbf{x}} / \mathrm{H}(5)_{\mathrm{x}^{\prime}}$ which is larger for exo- H atoms $\left(\mathrm{H}_{\mathrm{B}}, \mathrm{H}_{\mathrm{B}^{\prime}}\right)$ in all cases.
Simulation with the LAOKOON III program ${ }^{11}$ and variation of the coupling constants to a small extent showed that the originally used values already gave sufficient correspondence between the experimental and the simulated ${ }^{1} \mathrm{H}$ NMR spectra. Subsequent iterative simulation with the PANIC

Table $1{ }^{1} \mathrm{H}$ NMR data of the 3-azabicyclo[3.1.0]hexane skeleton of diastereomeric compounds 8a/10a and 8b/10b and of N-demethyl species 9a and 9b $(200 \mathrm{MHz}, J \text { in } \mathrm{Hz})^{\text {a.b }}$

	$\begin{aligned} & \mathrm{H}(1)_{\mathbf{x}} \\ & \mathrm{H}(5)_{\mathbf{x}^{\prime}} \end{aligned}$	$\begin{aligned} & \mathrm{H}(2)_{\mathrm{B}} \\ & \mathrm{H}(4)_{\mathrm{B}^{\prime}} \end{aligned}$	$\begin{aligned} & \mathrm{H}(2)_{\mathrm{A}} \\ & \mathrm{H}(4)_{\mathrm{A}^{\prime}} \end{aligned}$	$\begin{aligned} & J_{1.2 \mathrm{~B}} \\ & J_{5.4 \mathrm{~B}^{\prime}} \end{aligned}$	$\begin{aligned} & J_{1.2 \mathrm{~A}} \\ & J_{5.4 \mathrm{~A}^{\prime}} \end{aligned}$	$\begin{aligned} & J_{2 \mathrm{~A} \cdot 2 \mathrm{~B}} \\ & J_{4 \mathrm{~A}^{\prime} .4 \mathrm{~B}^{\prime}} \end{aligned}$	$J_{1.5}$
$8 a^{\text {c. } . ~}{ }^{\text {d }}$	1.69	2.87	1.83	5.94	1.96	9.76	8.69
$10 \mathrm{a}^{\text {d,e }}$	1.33	2.17	2.83	3.55	0	9.29	7.64
$8 \mathbf{b}^{f . g}$	1.58	3.13	2.10	6.9	2.8	10.1	8.5
$10{ }^{\text {f.g }}$	1.46	2.63	2.75	4.8	0	9.6	7.5
$9 \mathrm{a}^{\text {h. } .9}$	2.15	2.94	3.14	3.3	0	12.8	7.6
$9 \mathrm{~b}^{\text {d.g }}$	0.98	2.94	2.82	3.7	0	12.3	7.5

${ }^{a}$ Coupling constants J were taken from the spectra and optimized by simulation of the ${ }^{1} \mathrm{H}$ NMR spectra by the LAOKOON III program ${ }^{11}$ (for $\mathbf{8 a}, \mathbf{9 a}, \mathbf{1 0 a}$) or by the PANIC 81 program ${ }^{12}$ (for $\mathbf{8 b}, \mathbf{9 b}$ and $\mathbf{1 0 b}$). The coupling between $\mathrm{H}(1)_{\mathbf{X}}$ and $\mathrm{H}(5)_{\mathbf{X}^{\prime}}\left(\mathrm{XX}^{\prime}\right.$-coupling of the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX}^{\prime}-$ system) is essential for a correct simulation of the spectra; ${ }^{3} J_{\mathrm{HH}}=8.5$ Hz (for $8 \mathbf{8 a}$) and ${ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}$ (for 10a) were used as starting values for the coupling of the two syn-H-atoms $\mathrm{H}(1)_{\mathbf{x}}$ and $\mathrm{H}(5)_{\mathbf{x}^{\prime}}$ at the cyclopropane. All other couplings ($J_{\mathrm{AA}^{\prime}}, J_{\mathrm{BB}^{\prime}}, J_{\mathrm{AB}^{\prime}}, J_{\mathrm{AX}^{\prime}}, J_{\mathrm{BX}}$) were zero. ${ }^{b}$ Numbers of atoms correspond to the usual counting in a 3azabicyclo[3.1.0] hexane system; $\mathrm{H}(2)_{\mathrm{A}}$ and $\mathrm{H}(4)_{\mathrm{A}^{\prime}}$ are in the endoposition and $H(2)_{\mathbf{B}}$ and $\mathbf{H}(4)_{\mathbf{B}^{\prime}}$ are in the exo-position of the bicyclic skeleton. Assignment was made by coupling with $\mathbf{H}(1)_{\mathbf{X}} / \mathbf{H}(5)_{\mathbf{X}^{\prime}}$ which is larger for exo-hydrogen atoms $\left(\mathrm{H}_{\mathrm{B}}, \mathrm{H}_{\mathrm{B}^{\prime}}\right)$ in all cases. ${ }^{\mathrm{c}}$ Additional iterative adaption of the spectrum by the PANIC 81 program; ${ }^{12}$ two iterative steps, RMS-error at the end of the 2nd step: 0.098 ; error of $J \pm 0.04 \mathrm{~Hz} .{ }^{d} \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$. ${ }^{e}$ Additional iterative adaption of the spectrum by the PANIC 81 program; ${ }^{12}$ four iterative steps, R MS-error at the end of the 3 rd and the 4th step: 0.067 ; error of $J \pm 0.02 \mathrm{~Hz}$. ${ }^{f} \mathrm{CDCl}_{3} \cdot{ }^{g} J$-values are given with only one decimal digit if iterative simulation was not performed. ${ }^{h} \mathrm{CD}_{3} \mathrm{CN}$.

Fig. 1 Signals of the 3-azabicyclo[3.1.0]hexane skeleton of 8a and 10a of the simulated and the experimental ${ }^{1} \mathrm{H}$ NMR spectrum

81 program ${ }^{12}$ led to an almost identical reproduction of the experimental spectra of 8a and 10a. J-Values from the iterative simulation are given in Table 1; Fig. 1 shows the signals of the 3 -azabicyclo[3.1.0] hexane skeleton of $8 \mathbf{a}$ and 10a of the simulated and the experimental ${ }^{1} \mathrm{H}$ NMR spectrum.

Simulation without iterative proceeding was performed in the case of $\mathbf{8 b} / \mathbf{1 0 b}$ and $\mathbf{9 a} / \mathbf{9 b}$. Iterative calculated XX'-coupling constants of 8a and 10a were used for the simulation of the spectra of $\mathbf{8 b} / \mathbf{1 0 b}$ and $9 \mathbf{a} / \mathbf{9 b}$. The other experimentally detectable coupling constants were varied to some extent until an optimal agreement between experimental and simulated ${ }^{1} \mathrm{H}$ NMR spectra was obtained (Table 1).

The ${ }^{1} \mathrm{H}$ NMR signals of the azabicyclo [3.1.0]hexane skeleton of $\mathbf{8 a}$ and \mathbf{b} on the one hand and of $9 \mathbf{a}, \mathbf{b}$ and $\mathbf{1 0 a}, \mathbf{b}$ on the other hand differ both in shape and in chemical shifts. The most important fact is the coupling $J_{1.2 \mathrm{~A}}$ and $J_{5,4 \mathrm{~A}^{\prime}}$. It indicates the presence of a chair conformation \mathbf{C} for $\mathbf{8 a , b}\left(J_{1.2 \mathrm{~A}}, J_{5.4 \mathrm{~A}^{\prime}}=\right.$

Table 2 Correlation between the angle of ring buckle (α) and some dihedral angles in 3-azabicyclo[3.1.0]hexane 4 obtained by MNDOC calculations ${ }^{a}$

		Dihedral angles $\left({ }^{\circ}\right)^{b}$	
		$\mathrm{H}(1) \mathrm{C}(1) \mathrm{C}(2) \mathrm{H}(2)_{\mathrm{B}}$	$\mathrm{H}(1) \mathrm{C}(1) \mathrm{C}(2) \mathrm{H}(2)_{\mathrm{A}}$
Conformation	$\alpha\left({ }^{\circ}\right)$	$\mathrm{H}(5) \mathrm{C}(5) \mathrm{C}(4) \mathrm{H}(4)_{\mathrm{B}^{\prime}} \mathrm{H}(5) \mathrm{C}(5) \mathrm{C}(4) \mathrm{H}(4)_{\mathbf{A}^{\prime}}$	
Boat	30	-38.5	80.0
Boat	25	-35.9	83.1
Boat	20	-33.2	85.6
Boat	15	-30.4	88.1
Boat	10	-27.6	90.7
Boat	5	-24.9	93.4
Chair	5	-19.5	98.7
Chair	10	-16.7	101.6
Chair	15	-14.0	104.4
Chair	20	-11.3	107.3
Chair	25	-8.7	110.2
Chair	30	-6.1	113.1

${ }^{a}$ MNDOC parameters taken from ref. 13. ${ }^{b}$ Values of dihedral angles directed to $\mathrm{H}(2)_{\mathrm{A} . \mathrm{B}}$ and $\mathrm{H}(4)_{\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime}}$ are identical due to $C_{\mathrm{s}^{\prime}}$-symmetry.

0 Hz) and a boat conformation B for 9a,b and 10a,b ($J_{1,2 \mathrm{~A}}$, $J_{5.4 \mathrm{~A}^{\prime}}=2-3 \mathrm{~Hz}$).

8C

9B
a $R=C N$
b $R=M e$

10B
$\mathrm{HC}(1) \mathrm{C}(2) \mathrm{H} / \mathrm{HC}(5) \mathrm{C}(4) \mathrm{H}$-dihedral angles of the 3-azabicyclo[3.1.0]hexane system, dependent upon the ring buckling, were determined by MNDOC semiempirical calculations (see Table 2). For example, a boat conformation with $\alpha=20^{\circ}$ leads to a dihedral angle of 85.6° for $\mathrm{H}(1) \mathrm{C}(1) \mathrm{C}(2) \mathrm{H}(2)_{\mathrm{A}} / \mathrm{H}(5) \mathrm{C}$ (5) $\mathrm{C}(4) \mathrm{H}(4)_{\mathrm{A}^{\prime}}$. This agrees well with the missing coupling $J_{1.2 \mathrm{~A}}$ and $J_{5.4 \mathrm{~A}^{\prime}}$ in the boat conformation of $\mathbf{9 a}, \mathbf{b}$ and $\mathbf{1 0 a}, \mathbf{b}$. A value of 30° for a chair conformation on the other hand corresponds with a dihedral angle of 113.1° and with coupling constants of 1.96 Hz and 2.8 Hz for $8 \mathbf{a}$ and \mathbf{b}, respectively. The MNDOC semiempirical calculations ${ }^{13}$ were done for compound 4. The ring buckle was varied between -30° and -5° (chair) and between $+30^{\circ}$ and $+5^{\circ}$ (boat) in steps of 5°; each conformation was fully optimized with exception of the value α of the ring buckle.

The ${ }^{1} \mathrm{H}$ NMR results of $\mathbf{9 a , b}$ and $\mathbf{1 0 a , b}$ indicating a boat conformation correspond quite well with those which were reported for the boat conformation of methanoproline derivative 1 ['zero coupling' ${ }^{1.6}$ between $\mathbf{H}(1)$ or $\mathrm{H}(5)$ and the endo-H-atom of the adjacent methylene moiety; J values of 2.3 and $4.6 \mathrm{~Hz}^{1,6}$ for the analogous coupling of $\mathrm{H}(1)$ and $\mathrm{H}(5)$ with the exo- H -atom of the adjacent methylene group, respectively].

Conformational Analysis of the Compounds 8a/9a and $\mathbf{8 b} / \mathbf{9 b}$ on the Basis of Temperature Dependent ${ }^{1} \mathrm{H} N M R$ Spectroscopy.- ${ }^{1} \mathrm{H}$ NMR spectroscopy of the morpholine moiety in the compounds $\mathbf{8 a} / \mathbf{1 0 a}$ and $\mathbf{8 b} / \mathbf{1 0 b}$ could be used for a simple establishment of the configuration: topomerization of the H_{A} and the H_{B} signal of a $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$-group of morpholine is much easier if it is in the exo-position of a [n.1.0]bicyclic system than in the corresponding endo-position. ${ }^{14,15}$ It was shown that this topomerization process for hydrogen atoms of a mor-

Table $3 \Delta G^{\ddagger}$ Values of the dynamics of the morpholine ring of the compounds 8a,b and 9a,b in $\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5}$

	$\Delta G^{\ddagger} / \mathrm{kJ} \mathrm{mol}$
$\mathbf{8 a}$	$58.5,{ }^{b} 58.4^{c}$
$\mathbf{8 a}^{\text {a }}$	$58.6^{b} 59.9^{c}$
$\mathbf{9 a}^{d}$	$68.5,{ }^{b} 68.7^{c}$
$\mathbf{9 b}^{\text {e.f }}$	66.0^{b}

${ }^{a}$ Ref. 7. ${ }^{b}$ Determined for $\mathrm{OCH}_{2} .{ }^{c}$ Determined for $\mathrm{NCH}_{2} .{ }^{d} \mathrm{OCH}_{2}$: $\mathrm{H}_{\mathrm{A}}: 3.43, \mathrm{H}_{\mathrm{B}}: 2.95, J_{\mathrm{AB}}: 10.9 \mathrm{~Hz} ; T_{\mathrm{c}}=77^{\circ} \mathrm{C} . \mathrm{NCH}_{2}: \mathrm{H}_{\mathrm{A}}: 2.48, \mathrm{H}_{\mathrm{B}}: 1.84$, $J_{\mathrm{AB}}: 11.2 \mathrm{~Hz} ; T_{\mathrm{c}}=82^{\circ} \mathrm{C} ; \Delta G^{\ddagger}$ calculated according to the approximation formula for the coupled case. ${ }^{18}{ }^{e}$ Ref. 9. ${ }^{f} \mathrm{OCH}_{2}: \mathrm{H}_{\mathrm{A}}: 3.53$, $\mathrm{H}_{\mathrm{B}}: 3.11, J_{\mathrm{AB}}: 12.0 \mathrm{~Hz} ; T_{\mathrm{c}}=63^{\circ} \mathrm{C} . \mathrm{NCH}_{2}: \mathrm{H}_{\mathrm{A}}: 2.39, \mathrm{H}_{\mathrm{B}}: 1.90, J_{\mathrm{AB}}: 12.0$ $\mathrm{Hz} ; T_{\mathrm{c}}=65^{\circ} \mathrm{C} ; \Delta G^{\ddagger}$ calculated according to the approximation formula for the coupled case. ${ }^{18}$

Table 4 Selected bond lengths, torsional angles and interplanar angles for $\mathbf{8} b^{a}$

| Bond lengths $/ \AA$ | | | |
| :--- | ---: | :--- | ---: | ---: |
| $\mathrm{C}(1)-\mathrm{C}(5)$ | $1.512(3)$ | $\mathrm{N}(3)-\mathrm{C}(2)$ | $1.460(3)$ |
| $\mathrm{C}(1)-\mathrm{C}(6)$ | $1.508(3)$ | $\mathrm{N}(3)-\mathrm{C}(7)$ | $1.433(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.519(3)$ | $\mathrm{C}(4)-\mathrm{N}(3)$ | $1.478(3)$ |
| | | | |
| Torsional angles $\left(^{\circ}\right)$ | | | |
| $\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)_{\mathrm{A}}$ | 112.3 | $\mathrm{H}(4)_{\mathrm{A}}-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$ | -112.5 |
| $\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)_{\mathrm{B}}$ | -11.5 | $\mathrm{H}(4)_{\mathrm{B}}-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$ | 5.1 |

Interplanar angles $\left({ }^{\circ}\right)$

$$
\begin{array}{lr}
\mathrm{C}(1) \mathrm{C}(5) \mathrm{C}(6)-\mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(1) \mathrm{C}(2) & 65 \\
\mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(1) \mathrm{C}(2)-\mathrm{C}(2) \mathrm{N}(3) \mathrm{C}(4) & 29.5
\end{array}
$$

${ }^{a}$ The numbering of the atoms in Fig. 2 and Table 4 in this paper was changed partially with respect to the numbering in the deposited data; it was adjusted to the general numbering in a 3-azabicyclo[3.1.0]hexane system for better comparison with other data.

Fig. 2 ORTEP representation of $\mathbf{8 b}$ with the atom-labelling scheme. Elipsoids are scaled to enclose 33% of the electronic density.
pholine moiety in the endo-6-position of a bicyclo[3.1.0]hexane skeleton was additionally influenced by the conformation of the latter: the dynamics of morpholine are more hindered by a boat bicyclo[3.1.0] hexyl moiety than by a chair bicyclohexyl group as N -substituent. ${ }^{16,17}$

It may be expected, therefore, that conformational differences of $8 \mathbf{a}$ and 9 a or $\mathbf{8 b}$ and 9 b also are detectable by studying the morpholine dynamics. Thus, the ΔG^{\ddagger}-values of $9 \mathbf{a}$ and \mathbf{b} were determined and compared with those of $8 \mathbf{a}$ and \mathbf{b}, respectively (Table 3). The $\mathbf{N}(3)-H$ compounds $9 a$ and b indeed gave higher ΔG^{\ddagger}-values for the topomerization of morpholine H -atoms than the $\mathrm{N}(3)$-methyl analogues $8 \mathbf{a}$ and \mathbf{b}. The obviously higher space requirement of $\mathrm{N}(3)-\mathrm{H}$ in $9 \mathbf{a}$ and b than $\mathrm{N}(3)-\mathrm{Me}$ in $\mathbf{8 a}$
and \mathbf{b} can only be understood by the presence of different conformations since $\mathbf{H}-\mathrm{N}$ is less bulky than $\mathrm{N}-\mathrm{Me}$. A boat conformation can be deduced for $9 a, b$ and a chair conformation follows for $\mathbf{8 a}, \mathbf{b}$. Presumably, the H -atom at $\mathrm{N}(3)$ in $9 \mathbf{a}$ and \mathbf{b} is in the axial position due to lone pair-lone pair repulsion.

X-Ray Structural Analytic Detection of the Conformation of 8b.-Thus far X-ray structural data are only known for 3azoniabicyclo[3.1.0]hexane derivatives possessing an ammonium type nitrogen atom. Compound $\mathbf{8 b}$ was selected, therefore, for the X-ray structural analysis to get information about the conformation of a 3-azabicyclo[3.1.0]hexane skeleton as a free base. X-Ray structural analysis was performed at $-68^{\circ} \mathrm{C}$. Selected data are given in Table 4. The presence of a chair conformation with an equatorial N -methyl group for $\mathbf{8 b}$ can be clearly seen in the Ortep plot (Fig. 2). A steric inside fixation of the morpholine N -lone pair by the bicyclic system and its repulsive effect on the lone pair of the $N(3)$-nitrogen atom should be the reason for the chair structure of this type of compounds. MNDOC prediction of the dihedral angles $\mathrm{H}(1) \mathrm{C}(1) \mathrm{C}(2) \mathrm{H}(2)_{\mathrm{A} / \mathrm{B}} / \mathrm{H}(5) \mathrm{C}(5) \mathrm{C}(4) \mathrm{H}(4)_{\mathrm{A} / \mathrm{B}}$ for the found ring buckle $a=29.5^{\circ}$ (Table 2) agrees sufficiently with the experimental values from the X-ray structural analysis (Table 4).

HF/6-31G* Calculations of the 3-Azabicyclo[3.1.0]hexane Parent Compounds $\mathbf{4}$ and 5.-Energetic differences of chair and boat conformations of the 3-azabicyclo[3.1.0]hexane skeleton should be best predicted by ab initio calculations. The ab initio calculations were performed using the Convex and Cray versions of the Gaussian 92 program package. ${ }^{20}$ The 6-31 G* basis set^{21} was chosen for geometry optimizations. All geometries were fully optimized in C_{s} symmetry and characterized by diagonalization of the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ force matrix. Four conformations were investigated for each of the two parent compounds 4 and 5: a boat conformation with an axial $\left(\mathbf{B}_{\mathrm{ax}}\right)$ or equatorial (\mathbf{B}_{eq}) N-substituent and analogously a chair conformation with an axial (\mathbf{C}_{ax}) or equatorial ($\left.\mathbf{C}_{\mathrm{eq}}\right) \mathrm{N}$-moiety.
$\mathrm{HF} / 6-31 \mathrm{G}^{*}$ total energies, zero point energies ZPE, relative energies and interplanar angles of these selected conformations of $\mathbf{4}$ and 5 are given in Table 5; the missing conformation $4 C_{e q}$ proved not to be a minimum on the energy hypersurface. Fig. 3 shows the calculated structures of 4 and 5 . The boat conformation turned out to be favoured for both compounds 4 and 5. In the case of 4 , however, almost identical energies were calculated for both boat conformations $\mathbf{4 B}_{\mathrm{ax}}$ and $\mathbf{4 B}_{\text {eq }}$. An axial position of the N-methyl moiety in 5 was calculated to be unfavourable for boat and for chair conformation $\mathbf{5 B} \mathbf{B}_{\mathrm{ax}}$ and $\mathbf{5 C}_{\mathrm{ax}}$, respectively. The lowest energy was found for $\mathbf{5 B}_{\text {eq }}$.

The ring buckling (interplanar angles) of the chair conformation $5 \mathrm{C}_{\mathrm{eq}}$, predicted by the ab initio calculation (67.7° and 28.6°), corresponds quite well with the experimental values of the X-ray structural analysis of $\mathbf{8 b}\left(65^{\circ}\right.$ and 29.5°). The presence of a boat or a chair conformation proved to have no influence on the bond-length of $\mathrm{C}(1) \mathrm{C}(6), \mathrm{C}(1) \mathrm{C}(5)$ or $\mathrm{N}(3) \mathrm{C}(2)$ of the compounds 4 and $5[\mathrm{C}(1) \mathrm{C}(6): 1.50 \AA$ for all conformations of 4 and $5 ; \mathrm{C}(1) \mathrm{C}(5): 1.53 \AA$ for all conformations of $\mathbf{4}$ and 5 except $\mathbf{4 B}_{\mathrm{ax}}(1.52 \AA)$ and $4 \mathrm{C}_{\mathrm{ax}}(1.52 \AA) ; \mathrm{C}(2) \mathrm{N}(3): 1.46 \AA$ for all conformations of 4 and 5 except $4 \mathbf{B}_{\text {eq }}(1.47 \AA)$].

Conclusions

A boat conformation should be most favourable for a 3azabicyclo[3.1.0] hexane skeleton as indicated by ab initio calculations for the parent compounds 4 and 5 . It was shown experimentally that 6 -morpholino-3-azabicyclohexane derivatives indeed prefer a boat conformation if the 6 -amino moiety is in the exo-position as in 10 . Prevention of lone pairlone pair interactions, however, becomes important in the case

Table $5 \mathrm{HF} / 6-31 \mathrm{G}^{*}$ Total energies (au), zero point energies ($\mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$), relative energies including ZPE correction ($\mathrm{kcal}^{\text {(mol }}{ }^{-1}$) and interplanar angles of the conformers $\mathbf{4 B}_{\mathrm{ax}}, \mathbf{4 B}_{\mathrm{eq}}, \mathbf{4 C}_{\mathrm{ax}}, \mathbf{5 B} \mathrm{B}_{\mathrm{ax}}, \mathbf{5 B} \mathrm{B}_{\mathrm{eq}}, \mathbf{5 C}_{\mathrm{ax}}$ and $\mathbf{5 C} \mathrm{C}_{\mathrm{eq}}$

	Conformation	$\frac{\mathrm{HF}(\mathrm{au})\left[E_{\mathrm{re} 1}\right]}{\mathrm{kcal} \mathrm{~mol}^{-1}}$	ZPE/kcal mol^{-1}	Interplanar angle ($\left.{ }^{\circ}\right)^{\text {a }}$	
				$\begin{aligned} & \mathrm{C}(1) \mathrm{C}(5) \mathrm{C}(6) \\ & \mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(1) \mathrm{C}(2) \end{aligned}$	$\begin{aligned} & \mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(1) \mathrm{C}(2) \\ & \mathrm{C}(2) \mathrm{N}(3) \mathrm{C}(4) \end{aligned}$
$4 B_{\text {eq }}$	Boat	$\begin{gathered} -248.98243 \\ {[0]} \end{gathered}$	91.44	68.2	35.0
4B $\mathrm{ax}^{\text {a }}$	Boat	$\begin{gathered} -248.98253 \\ {[0.1]} \end{gathered}$	91.56	68.3	26.4
$4 \mathrm{C}_{\mathrm{ax}}$	Chair	$\begin{gathered} -248.97496 \\ {[4.7]} \end{gathered}$	91.43	67.8	25.1
5B ${ }_{\text {eq }}$	Boat	$\begin{aligned} & -288.01433 \\ & {[0]} \end{aligned}$	110.01	68.0	34.4
$5 \mathrm{C}_{\text {eq }}$	Chair	$\begin{gathered} -288.00745 \\ {[4.1]} \end{gathered}$	109.84	67.7	28.6
5B $\mathrm{Bax}^{\text {a }}$	Boat	$\begin{gathered} -288.00659 \\ {[4.7]} \end{gathered}$	109.82	68.8	15.5
$5 \mathrm{C}_{\text {ax }}$	Chair	$\begin{gathered} -288.00216 \\ {[7.8]} \end{gathered}$	110.15	67.5	31.0

${ }^{a}$ The numbering of the atoms corresponds to the general numbering in a 3-azabicyclo[3.1.0]hexane system.

$4 B_{\text {eq }}$

$4 B_{a x}$

$4 C_{a x}$

$5 B_{\text {eq }}$

$5 C_{e q}$

$5 B_{a x}$

$5 C_{a x}$

Fig. $3 \mathrm{HF} / 6-31 \mathrm{G}^{*}$ Optimized geometries of the 3-azabicyclo[3.1.0]hexane derivatives 4 and 5
of endo-6-morpholino-3-azabicyclohexane compounds 8 and 9. In this case lone pair-lone pair interactions are circumvented in a boat conformation by arranging the lone pair in an equatorial position. This can be realized by 9 with a hydrogen atom as substituent at $N(3)$. Substituents at $N(3)$ which are larger than a hydrogen atom strongly prefer an equatorial position. Interaction of the resulting axial $\mathrm{N}(3)$-lone pair with the second N lone pair then can be avoided only by adoption of a chair conformation as in 8 .

Experimental

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured with a Bruker WP 200 and an AMX 400 spectrometer $\left(\mathrm{Me}_{4} \mathrm{Si}\right.$ as internal standard). Ab initio calculations were done with a Convex C220 and a Cray YMP supercomputer. MNDOC semiempirical molecular orbital calculations were performed on a 486 Personal Computer.
(1 $\alpha, 5 \alpha, 6 \beta)-6$-Morpholino-3-azabicyclo[3.1.0]hexane-6-carbonitrile $9 \mathbf{9 a}-\mathrm{Pd}$-catalyst ($10 \% \mathrm{Pd}-\mathrm{C}, 710 \mathrm{mg}$) was added to a
solution of N-benzyl compound $11^{9}(2.0 \mathrm{~g}, 7.06 \mathrm{mmol})$ in methanol ($80 \mathrm{~cm}^{3}$). The solution was saturated with hydrogen and stored over hydrogen until the theoretical amount of hydrogen ($157 \mathrm{~cm}^{3}, 7.06 \mathrm{mmol}$) was consumed. Removal of the catalyst by filtration, evaporation of the solvent and recrystallization of the residue from ether gave 9 a as colourless crystals ($0.75 \mathrm{~g}, 55 \%$): m.p. $81^{\circ} \mathrm{C}$ (Found: C, $62.2 ; \mathrm{H}, 8.0 ; \mathrm{N}$, 21.8. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 62.15 ; \mathrm{H}, 7.82 ; \mathrm{N}, 21.74 \%$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3380(\mathrm{~N}-\mathrm{H})$ and $2200(\mathrm{C}-\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ $1.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 2.15\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{X}_{1}}, \mathrm{H}_{\mathrm{X}^{\prime} 1}\right), 2.94\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{B} 1}, \mathrm{H}_{\mathrm{B}^{\prime} 1}\right)$, $3.14\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{A} 1}, \mathrm{H}_{\mathrm{A}^{\prime} 1}\right)\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX}^{\prime}\right.$-system, 3-azabicyclohexane system $), 2.51\left(2 \mathrm{H}, \mathrm{H}_{\gamma}\right), 2.60\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{X} 2}\right), 3.48\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{B} 2}\right)$ and 3.74 $\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{A} 2}\right)(\mathrm{ABXY}$-system, morpholine $) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 32.5(\mathrm{~d})$, $41.5(\mathrm{~s}), 48.0(\mathrm{t}), 51.3(\mathrm{t}), 66.8(\mathrm{t})$ and $116.1(\mathrm{~s})$.

X-Ray Crystal Structure Analysis of $\mathbf{8 b}$.-Single crystals of $\mathbf{8} \mathbf{b}^{9}$ were obtained by crystallization from ether.

Crystal data. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}, M=196.3$. Monoclinic, $a=$ $8.447(4), b=8.825(3), c=15.420(6) \AA ; \beta=105.66(3)^{\circ}, V=$ $1106.8(15) \AA^{3}$; space group $P 2_{1} / n, Z=4, D_{\mathrm{X}}=1.18 \mathrm{~g} \mathrm{~cm}^{-3}$.

Colourless crystal. Crystal dimensions $0.6 \times 0.5 \times 0.3 \mathrm{~mm}$, $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.71 \mathrm{~cm}^{-1}$.

Data collection and processing. Enraf-Nonius CAD4 diffractometer, temperature: $205 \mathrm{~K} ; \omega / 2 \theta$ mode with ω scan width $=1.00+0.35 \tan \theta, \omega$ scan speed $1.21-4.02 \mathrm{deg} \mathrm{min}^{-1}$, graphite-monochromated Mo-K α radiation; 1235 reflections measured $\left(4.00<2 \theta<42.00^{\circ}\right), 1182$ unique [merging $R=$ $0.036]$, giving 988 with $I>2.50 \sigma(I)$.

Structure analysis and refinement. The structure was solved by direct methods. Refined was performed by a full-matrix least-squares program. Hydrogen atoms were localized in a ΔF map and refined with isotropic temperature factors. Refinement converged at $R=0.0064$ and $R_{\mathrm{w}}=0.069$, weighting scheme: $w=4 F_{\mathrm{o}}^{2} /\left[\sigma(I)^{2}+\left(P F_{\mathrm{o}}{ }^{2}\right)^{2}\right](P=0.015)$. The largest shift $/$ error ratio at this stage was 0.62 . The residual electron density was $<0.23 .^{19}$

Acknowledgements

Support of this work by the Deutsche Forschungsgemeinschaft is gratefully acknowledged. Additionally the work was sponsored by the Fonds der Chemischen Industrie.

References

1 Y. Fujimoto, F. Irreverre, J. M. Karle, I. L. Karle and B. Witkop, J. Am. Chem. Soc., 1971, 93, 3471.

2 J. W. Epstein, H. J. Brabander, W. J. Fanshawe, C. M. Hofmann, T. C. McKenzie, S. R. Safir, A. C. Osterberg, D. B. Cosulich and F. M. Lovell, J. Med. Chem., 1981, 24, 481.

3 F. R. Ahmed and E. J. Gabe, Acta Crystallogr., 1964, 17, 603.
4 E. Vilsmaier, C. Tetzlaff, V. Butz and G. Maas, Tetrahedron, 1991, 47, 8133.

5 D. Wendisch and W. Naegele, Org. Magn. Reson., 1970, 2, 619.
6 R. J. Abraham and G. Gatti, Org. Magn. Reson., 1970, 2, 173.

7 C. Tetzlaff, E. Vilsmaier and W.-R. Schlag, Tetrahedron, 1990, 46, 8117.

8 E. Vilsmaier, T. Stamm, W. Dauth, C. Tetzlaff andS. Barth, Bull. Soc. Chim. Belg., 1992, 101, 37.
9 V. Butz and E. Vilsmaier, Tetrahedron, 1993, 49, 6031.
10 K. G. Taylor, J. Chaney and J. C. Deck, J. Am. Chem. Soc., 1976, 98, 4163.

11 LAOKOON III Fortran Version, G. A. Mirris, Department of Chemistry, University of Manchester, UK; Atari-ST-Version, R. Paape, Bremen, Germany.
12 ASPECT-2000-NMR-Software Manual, Part 11; NMR-Simulation and Iteration, PANIC 81, Fa. Bruker.
13 W. Thiel, J. Am. Chem. Soc., 1981, 103, 1413.
14 E. Vilsmaier, W. Tröger and G. Haag, Chem. Ber., 1981, 114, 67.
15 E. Vilsmaier, Bull. Soc. Chim. Belg., 1985, 94, 521.
16 E. Vilsmaier, J. Fath and G. Maas, Synthesis, 1991, 1142.
17 E. Vilsmaier, J. Fath, C. Tetzlaff and G. Maas, J. Chem. Soc., Perkin Trans. 2, preceding paper.
18 H. Günther, NMR-Spektroskopie, Thieme, Stuttgart, 1992, pp. 310, 321.

19 All calculations were done with the program package MoIEm (Enraf-Nonius, Delftt, The Netherlands).
20 GAUSSIAN 92, Revision, B. M. J. Frisch, G. W. Trucks, M. HeadGordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, Gaussian, Inc., Pittsburg PA, 1992.
21 P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1972, 28, 213; M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654; W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.

Paper 3/02054A
Received 8th April 1993
Accepted 8th June 1993

